

Blood Group Genetics

Department of Medical Genetics Medical University of Warsaw

Classical genetics

Classical genetics laws:

- Mendel's First Law Law of Segregation
- Mendel's Second Law Law of Independent Assortment
- Co-dominance phenotypic expression of gene's alleles is simultaneous and independent
- Epistasis phenomenon in which one gene influences the phenotypic expression of another gene, while not being its allele

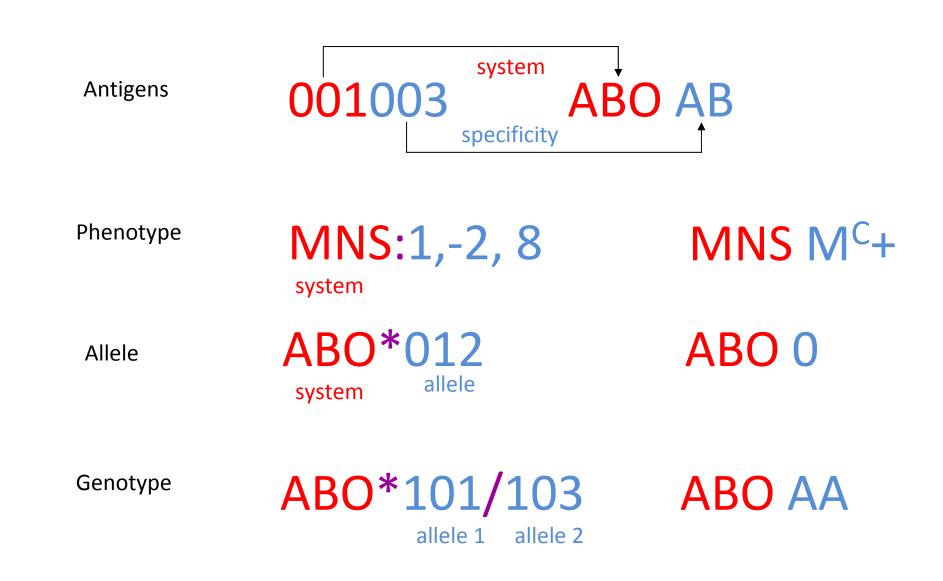
Blood Group Systems

Blood Group – antigenic determinants on the surface of erythrocytes distinguished by the immune system in individuals without a particular antigen (alloantibodies)

- 285 antigens
- 33 group systems

Group system – consists of one or more antigens controlled at a single gene locus, or by two or more very closely linked homologous genes Collection - consist of serologically, biochemically, or genetically related antigens, which do not fit the criteria required for system status (200 series) 901 Series – (or 'public') contains antigens with an incidence of greater than 90% and which cannot be included in a system or collectioni 700 Series – (or 'private') contains antigens with an incidence of less than 1% and which cannot be included in a system or collection

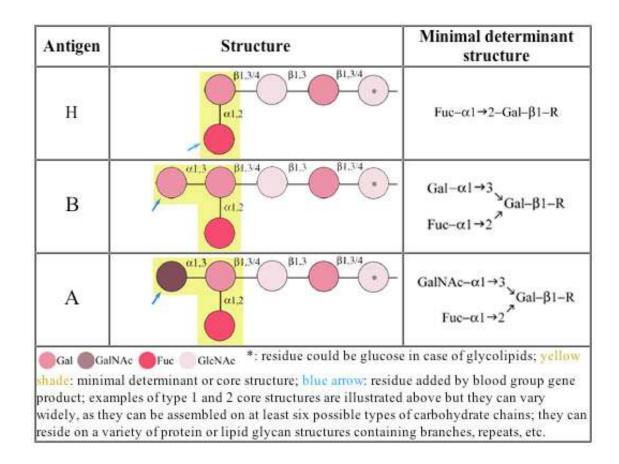
Red blood cells group systems


Nr	Nazwa	Symbol	l Gen	Chromosom	Nr	Nazwa	Symbo	l Gen	Chromosom
001	ABO	ABO	ABO <i>GYPA, GYPB,</i>	9q34.2	018	Н	Н	FUT1	19q13.33
002	MNS	MNS	GYPE	4q31.21	019	Кх	ХК	ХК	Xp21.1
003	Р1РК	Р1РК	A4GALT	22q13.2	020	Gerbich	GE	GYPC	2q14.3
004	Rh	RH	RHD, RHCE	1p36.11	021	Cromer	CROM	CD55	1q32.2
005	Lutheran	LU	LU	19q13.32	022	Knops	KN	CR1	1q32.2
006	Kell	KEL	KEL	7q34	023	Indian	IN	CD44	11p13
007	Lewis	LE	FUT3	19p13.3	024	Ok	ОК	BSG	19p13.3
008	Duffy	FY	DARC	1q23.2	025	Raph	RAPH	CD151	11p15.5
009	Kidd	JK	SLC14A1	18q12.3	026	John Milton Hagen	JMH	SEMA7A	15q24.1
010	Diego	DI	SLC4A1	17q21.31	027	I	I	GCNT2	6p24.2
011	Yt	ΥT	ACHE	7q22.1	028	Globoside	GLOB	B3GALT3	3q26.1
012	Xg	XG	XG, MIC2	Xp22.33	029	Gill	GIL	AQP3	9p13.3
013	Scianna	SC	ERMAP	1p34.2	030	Rh-associated glycoprotein	RHAG	RHAG	6p21-qter
014	Dombrock	DO	ART4	12p12.3	031	FORS	FORS	GBGT1	9q34.13
015	Colton	СО	AQP1	7p14.3	032	JR	JR	ABCG2	4q22
016 L	andsteiner-Wiene.	r LW	ICAM4	19p13.2	033	LAN	LAN	ABCB6	2q36
017	Chido/Rodgers	CH/RG	C4A, C4B	6p21.3					

T/Tn (antygeny Th, Tk, Tr, Tx) C1GALT1, C1GALT1C1 7p14-p13

CAD

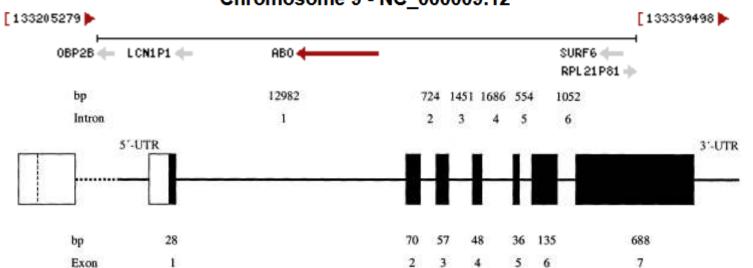
Sid (Sda)


Nomenclature

ABO group system

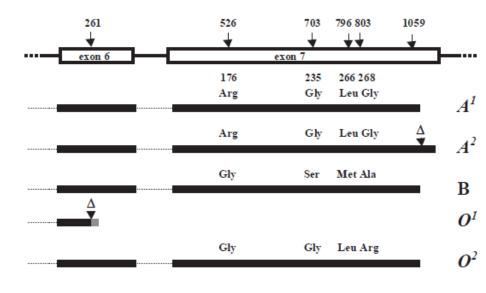
No. of antigens	4: A1, A2, B, H (=0)
Nature of antigen	oligosaccharide
Carrier molecule	glycoproteins, glycolipids
Gene	ABO 9q34.1-q34.2
Frequencies of antigens	A: 43% Caucasians, 27% Blacks, 28% Asians B: 9% Caucasians, 20% Blacks, 27% Asians A1: 34% Caucasians, 19% Blacks, 27% Asians
Frequencies of phenotypes	Caucasians: group O, 44%; A ₁ , 33%; A ₂ , 10%; B, 9%; A1B, 3%; A2B, 1% Blacks: group O, 49%; A ₁ , 19%; A ₂ , 8%; B, 20%; A1B, 3%; A2B, 1% Asians: group O, 43%; A ₁ , 27%; A ₂ , rare; B, 25%; A1B, 5%; A2B, rare Note: Blood group A is divided into two main phenotypes, A ₁ and A ₂

- Basic blood types A, B, AB, O
- Antigens are oligosaccharides modified by gene specific transferases
- Present in most cells, and in secretors in secretions and body fluids
- Antigens appear around 6 week of embryonic life, but their full expression occurs from 6 to 18 months after birth



Antigen specificity conditioning:

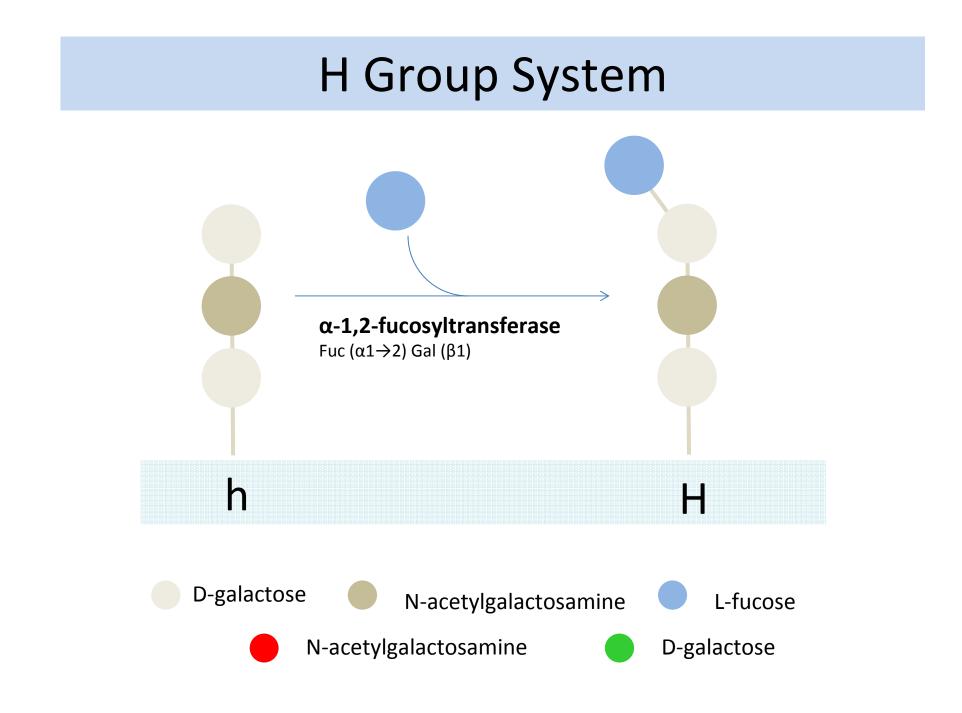
Antigen A = N-acetylgalactosamine Antigen B = D-galactose Antigen H = L-fucose


Gene ABO 9q34.1-q34.2

- 7 exons (28-688 bp, in total 18 kpz), longest 6 and 7
- coding region: 1065 bp = 353 AA, proteins: transferase A, transferase B
- Alleles:
 - A 110 alleles (9 subgroups), allele 101 is taken as reference
 - B 46 alleles (6 subgroups)
 - 0 62 alleles (most frequent del within exon 6)

Chromosome 9 - NC_000009.12

G. Daniels / Transplant Immunology 14 (2005) 143-153


Transferase A vs Transferase B:: 7 SNP- 6 (1) and 7 (6) exon, while two substitutions determine substrate specificity (L266M i G268A) Allele 0 01 - Deletion in codon 117, frameshift, STOP codon 02 - G268A = lack of activity in transferases A and B

<<pre><< <C> >>
Codon Nr. 87 // 99 // 176 // 219 // 235 // 266 // 268 // 310
ABO*A1.01.01.1 Val // Thr // Arg // His // Gly // Leu // Gly // Leu
ABO*B1.01.01.1 --- // --- // Gly // --- // Ser // Met // Ala // --ABO*O.01.01.1 --- // His // ... //

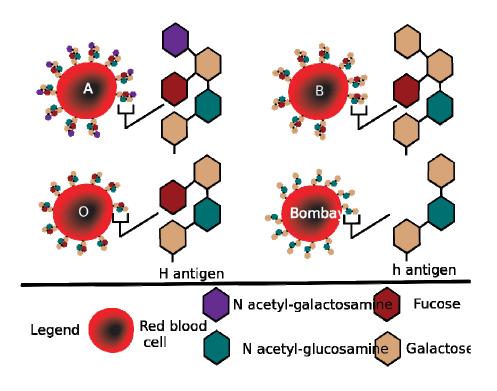
Amorphic allele 0 is recessive to A and B Co-dominance of alleles A and B

ABO genotype in the offspring		ABO alleles inherited from the mother		
F		A	в	0
ABO alleles	A	A	AB	A
inherited from the father	в	AB	в	В
	0	A	в	0

No. of antigens	1 (antigen H)
Nature of antigen	oligosaccharide
Carrier molecule	glycoprotein, glycolipid
Genes	FUT1 (H) α -1,2-fucosyltransferase FUT2 (Se) α -1,2-fucosyltransferase
	(Sec1 – pseudogene located 5' of FUT2 within a 30 kb region; homologous to FUT1 and FUT2)

19q13.3 FUT1 and FUT270% homology, 35 kbp distance, LD

FUT1	FUT2
H (h)	Se (se)
RBC Erythoid tissues, vascular endothelium and primary sensory neurons of PNS	Exocrine secretors Epithelia, saliva
fucosyltransferase1	fucosyltransferase2
8 exons (365 AA)	2 exons (343 AA)


Allele se – Trp143Ter

Frequent genotypes

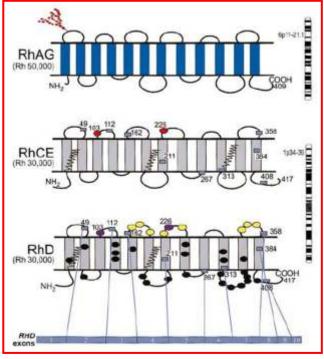
	Secretors	Nonsecretors
H antigen on RBC	present	present
H antigen in saliva	present	absent
lg anti-H	absent	absent
Genotype	H/H or H/h Se/Se or Se/se	H/H or H/h se/se

Bombay blood group (h/h blood group or O_h or ABH_{null}) – 0 blood type of AB0 system in individuals with ABO gene functional alleles

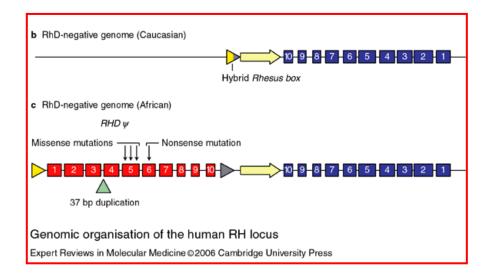
- Classical Bombay phenotype FUT1 Tyr316Ter (hh)
 - India 1:10 000
 - Taiwan 1:8 000
- Caucasians numerous FUT1 non-sens mutations
 - Europe 1:1 000 000

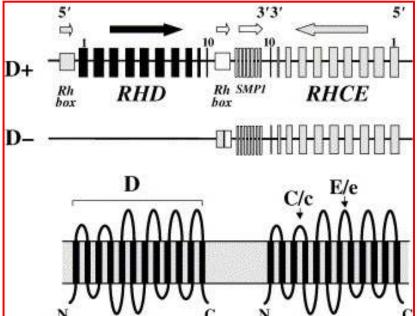
Apparent group 0. Despite the existence of A and B group genes, the blood in contact with calibration sera is not agglutinating, but other than usually found in the plasma of blood group 0 anti-A and anti-B, in Bombay phenotype there are also anti-H.

Rare genotypes

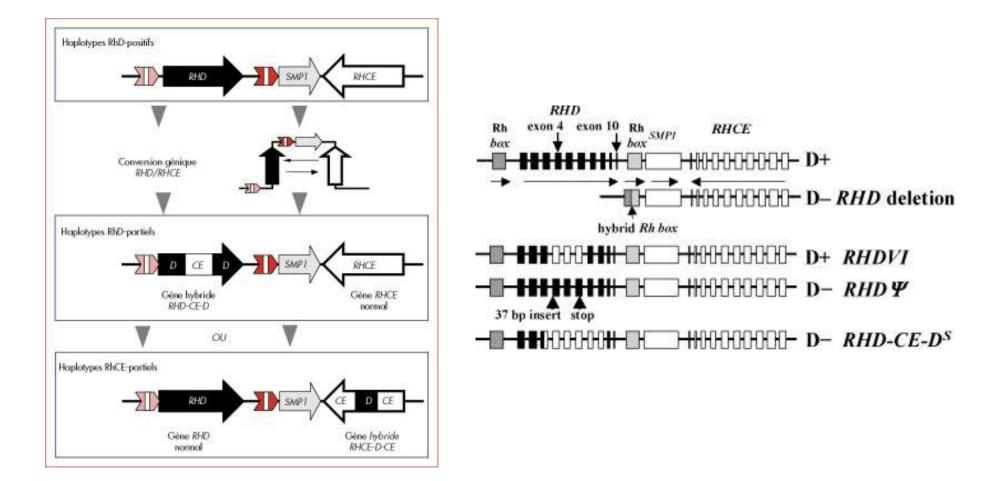

	Bombay	para-Bombay
H antigen on RBC	absent	absent
H antigen in saliva	absent	present
lg anti-H	present	present
Genotype	h/h se/se	h/h Se/Se or Se/se

No. of antigens	49, including D, C, E, c, e
Nature of antigen	Protein
Carrier molecule	Protein with unknown function
Genes	RHD (D) RHCE (C, c, E, e)
Frequencies of antigens	D: 85% Caucasians, 92% Blacks, 99% Asians C: 68% Caucasians, 27% Blacks, 93% Asians E: 29% Caucasians, 22% Blacks, 39% Asians c: 80% Caucasians, 96% Blacks, 47% Asians e: 98% Caucasians, 98% Blacks, 96% Asians
Frequencies of phenotypes	Rh haplotype DCe: most common in Caucasians (42%), Native Americans (44%), and Asians (70%) Rh haplotype Dce: most common in Blacks (44%) Rh D-negative phenotype: most common in Caucasians (15%), less common in Blacks (8%), and rare in Asians (1%)
Expression	Erythroid tissues


- Membrane proteins (12-transmembrane domains),
- 35 aa difference between antigen D and C/c or E/e
- RhD 30 epitopes
- Epitopes Rh C/c (S103P) and RhE/e (P226A) located in 2 and 4 loop, respectively; the rest not relevant

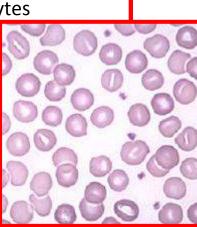

Protein function:

- Maintenance of RBC membrane integrity
- NH4+ transport

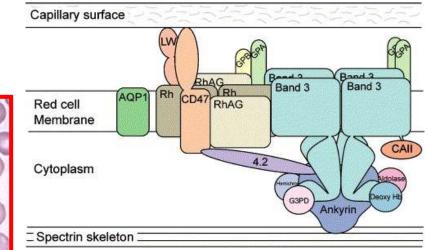

- 1p36-p34, 97% homology
- 10 exons, ok. 75 kbp (416 AA)
- Rhesus box: 9 kbp, flanking RHD, high homology
- Rhd (dd, Rh-):
 - RHD deletion (Caucasian population)
 - RHD\u03c6 pseudogene (African population)

D/d: del RHD (~ 15% of population) **C/c**: four nonsynonymous SNPs, while (S103P) determines specificity, 109 bp difference in intron 2 **E/e**: SNP (676G \rightarrow C) A226P.

Rh antigens are inherited as haplotypes consisting of 3 alleles


Rh and RHAG Group Systems

Rh_{null} phenotype Rh deficiency syndrome


Type *amorph*, *regular*, *mod*

Missense mutations, splicing sites, deletion within exon

- Increased osmosensitivity, shortened RBC life → hemolytic anemia
- Spherocytes, stomatocytes
- Transfuzje obecność przeciwciał

- RhAG proteins in RBC membrane are necessary for proper location of Rh system antigens
- Glikoproteina związana z Rh wykazuje 35% homologię w sekwencji aminokwasów z białkami układu Rh
- 6p12.3, 10 exons
- No polymorphisms
- It is not Rh antigen (separate RHAG group system)

Rare Rh phenotypes

D antigen 30 epitopes

 Weak D: all epitopes are present, but in smaller amount

1% of Caucasian population, a change of one aa causes problems with D integration into the membrane. Transfusiology: no anti-D; as a donor – Rh+, as a recipient – Rh–

 Partial D: lack of some epitopes, but normal expression of present ones RHD and RHCE hybryde, difficult indentification, risk of hemolytic disease after blood transfusion

Lewis Group System

No. of antigens	4
Nature of antigen	oligosaccharide
Carrier molecule	glycoprotein, glycolipid
Genes Chr. 19	FUT3 α-1,3-1,4-fucosyltransferase FUT6 (FUT2 (Se) α-1,2-fucosyltransferase)
Notes	lack of expression in erythroid tissues, antigens adsorbed on RBC

	FUT3 (Le/)	FUT3 (le/le)
FUT2 (Se/)	Le (a-b+)	Le(a-b-)
del FUT2 (se/se)	Le (a+b-)	Le(a-b-)
FUT2 (385A>T)	Le (a+b+)	Le(a-b-)*

FUT3 encodes transferase attaching fructose to N-acetylgalactosamine with glycosidic bond in configuration 1,4 (Le^a, Le^b) or 1,3 (Le^x, Le^y)

Expression: exocrine epithelial cells, mostly of endodermal origin, digestive track (pancreas, colon). Variable level of Le antigens depends on age, physiological and pathological state.

Kell and XK Group Systems

KEL	
No. of antigens	25
Nature of antigen	protein
Carrier molecule	glycoprotein with catalytic properties enzyme converting endothelin-3
Gene Chr. 7	KEL
Frequency of antigens	 ~100%: k, Kp^b, Ku, Js^b, K11, K12, K13, K14, K18, K19, Km, K22, K26, K27 K antigen: 9% in Caucasians (2% in Blacks, , up to 25% in Arabs) ~2%: Kp^a, U1^a ~0.01%: Js^a (0.01% in Caucasians, 20% in Blacks), Kp^c, K23 Others: K17 (~0.3%), rare: K24, VLAN, K16
Frequency of phenotypes	 K-k+ in 91% Caucasians and 98% Blacks K+k- in 0.2% Caucasians and is rare in Blacks K+k+ in 8.8% Caucasians and 2% Blacks Kp (a-b+) in 97.7% Caucasians and 100% Blacks Js (a-b+) in 100% Caucasians and 80% Blacks

Kell and XK Group Systems

KEL

- 7q33, 19 exons, 21kbp
- high polymorphism

KEL

732 aa, 5 glycosylation sites, one transmembrane domain

Most frequent antigens of Kell system:

- k T193M K* *lack of glycosylation aa191
- Kp^a R281W Kp^b
- Js^b L597P Js^a

Kell and XK Group Systems

McLeod syndrome (XR)

Kel protein is linked by a single disulfide bond to a RBC integral membrane protein XK (Xp21.1)

Features:

- Onset between 40-50 years of age
- Neuropathy, cardiomyopathy, myopathy, hemolytic anemia, dementia, epileptic seizures
- Acanthocytes (abnormal erythrocytes)

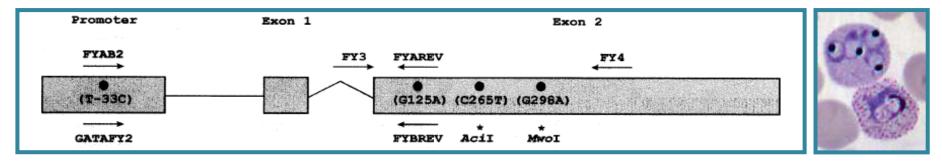
MNS

No. of antigens	43, including M, N, S, s
Nature of antigen	protein
Carrier molecule	glycophorin
Genes Chr. 4	GYPA (co-dominant M and N) GYPB (co-dominant S and s, C and c) GYPE
Frequency of antigens	M: 78% Caucasians, 74% Blacks N: 72% Caucasians, 75% Blacks S: 55% Caucasians, 31% Blacks s: 89% Caucasians, 93% Blacks
Frequency of phenotypes	M+N+S+s+: 24% Caucasians, 13% Blacks M+N+S-s+: 22% Caucasians, 33% Blacks M-N+S-s+: 15% Caucasians, 19% Blacks M+N-S+s+: 14% Caucasians, 7% Blacks M+N-S-s+: 8% Caucasians, 16% Blacks M-N+S+s+: 6% Caucasians, 5% Blacks M+N-S+s: 6% Caucasians, 2% Blacks Less common phenotypes are M+N+S+s- (4% Caucasians, 2% Blacks) and M-N+S+s- (1% Caucasians, 2% Blacks).

MNS

4q28.2-q13.1, 97% homology

GYPA: 7 exons, 60 kbp, MNS1(M) and MNS2(N) Ser1Leu, Gly5Gln


GYPB: 5 exons, 58 kbp MNS3 (S) and MNS4(s) Met29Thr

Duffy

No. of antigens	6: Fy ^a , Fy ^b , Fy3, Fy4, Fy5, Fy6
Nature of antigen	protein
Carrier molecule	glycoprotein, chemokine receptor, receptor for Plasmodium
Genes Chr. 1	FY (Duffy blood group gene)
Frequency of antigens	Fy ^a : 66% Caucasians, 10% Blacks, 99% Asians Fy ^b : 83% Caucasians, 23% Blacks, 18.5% Asians Fy3: 100% Caucasians, 32% Blacks, 99.9% Asians
Frequency of phenotypes	Fy(a+b+): 49% Caucasians, 1% Blacks, 9% Chinese Fy(a-b+): 34% Caucasians, 22% Blacks, <1% Chinese Fy(a+b-): 17% Caucasians, 9% Blacks, 91% Chinese Fy(a-b-): ~0% Caucasians, 68% of Blacks
Expression	Duffy antigens are expressed on many different types of cells. Even Fy(a-b-) individuals who do not produce Duffy antigens on their RBCs do express Duffy antigens elsewhere, including endothelial cells that line blood vessels, epithelial cells of kidney collecting ducts, lung alveoli, and Purkinje cells of the cerebellum. Duffy antigens are also expressed in the thyroid gland, the colon, and the spleen.

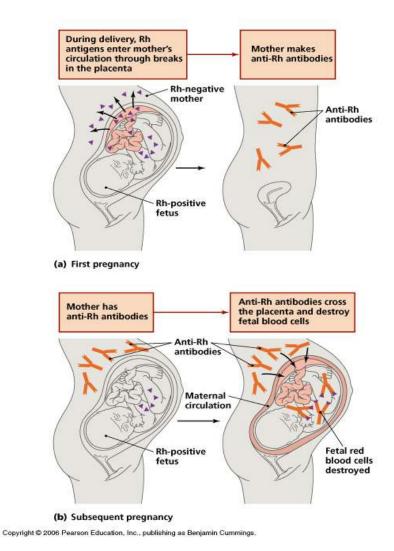
Duffy

- FY, 1q22-q23, exon 155 bp, exon 1038 bp
- Fy (a+), Fy (b+)
 - 2 main alleles FYA i FYB (G125A) encode antigens Fy^a and Fy^b (Gly42Asp)
- Fy(a-b-):
 - FYB^{ES}: -33T→C FYB within GATAbox (antigen present in different tissues!); subsaharian region (and USA) around 70% of population
 - FYAO or FYBO: nonsense mutation in exon (no antigen in different tissues); vary rare
- Fy^x [Fy(b+^x)]:
 - FYB^{WK} 265C→T (Arg897Cys) linked with 298G→A (Ala100Thr); Cau and Afr ca.2%

Diego

No. of antigens	21: Di ^a , Di ^b , and Wr ^a
Nature of antigen	protein
Carrier molecule	glycoprotein: band 3
Gene Chr. 17	SLC4A1 (17q21-22)
Frequency of antigens	Di^b~100% Di ^a 36% South American Indians, 12% Jpn, and 12% Chn, 0,01% Cau i Afr
Frequency of phenotypes	Di(a-b+) >99.9% Cau iAfr oraz >90% Azjaci Di(a+b+) <0.1% of Caucasians and Blacks i in 10% Asians Di(a+b-) <0.01% Caucasians, Blacks, i Asians. Di(a-b-) 1 case
Expression	RBC, kidneys

In Poland 6 HDFN cases have been reported


Kidd

No. of antigens	3: Jk1 (Jk ^a), Jk2 (Jk ^b) and Jk3
Nature of antigen	protein
Carrier molecule	glycoprotein - urea transporter
Gene Chr. 18	SLC14A1 18q11-q12
Frequency of antigens	Jk ^a : 77% Caucasians, 92% Blacks, and 73% Asians Jk ^b : 74% Caucasians, 49% Blacks, and 76% Asians Jk 3 : 100% in most populations, >99% in Polynesians
Frequency of phenotypes	Jk(a+b+): 50% Caucasians, 41% Blacks, 49% Asians Jk(a+b-): 26% Caucasians, 51% Blacks, 23% Asians Jk(a-b+): 23% Caucasians, 8% Blacks, 27% Asians JK(a-b-): Rare in most populations, found in 0.9% Polynesians
Expression	RBC, kidneys

Hemolytic disease of the newborn (HDN)

- Most common in RHD and Kell (less frequent in AB0)
- In contrast to Ig anti-rhd, Ig anti-kell apart from hemolysis cause also suppression of erythropoiesis
- Modifying factors:
 - Simultaneous incompatibility in ABO and Rh systems
 - Isotype of produced IgG
 - Dose of antigen

Hemolytic disease of the newborn (HDN)

Immunization – producing anti-D (IgM, IgG - pass through the placenta) – HDFN

Symptoms: -hemolytic anemia -extramedullary hematopoiesis -multiorgan damage -respiratory distress -hemolytic jaundice

Prophylaxis: Mother (Rh-) – IgG anti-D

Blood group genotyping

- Genotyping : D, C, c, E (Rh) and K (Kell)
- Advantages:
 - HDFN prevention
 - Limiting prenatal anti-D profilaxis only to RhDwomen pregnant with RhD+ child, around 60 %
- Techniques:
 - PCR, sequencing, real-time PCR

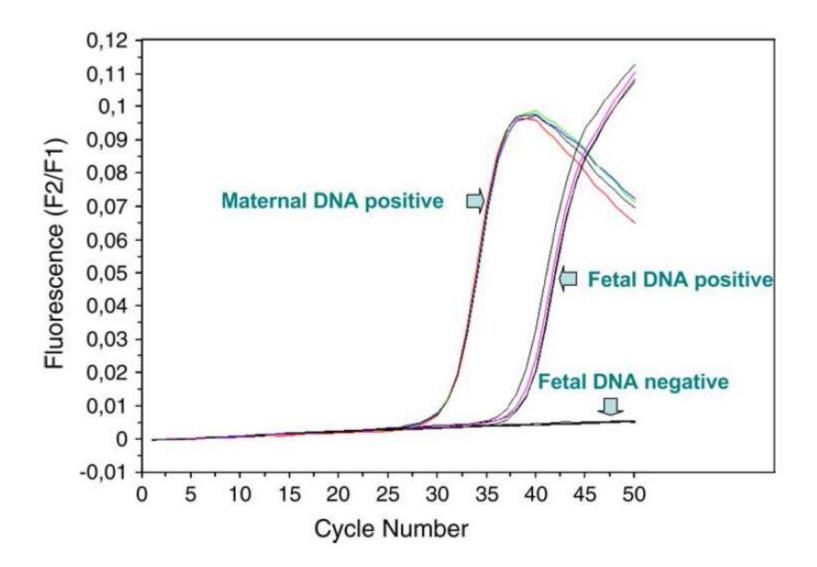
Material for genotyping

Invasive

Chorionic villus sampling (CVS) Amniocentesis Percutaneous Umbilical Cord Blood Sampling (PUBS)

Non-invasive

(from mother's blood) fetal cells fetal free DNA


Flaws:

- risk of miscarriage
- risk of mother's immunization
 - risk of harming the foetus

Flaws:

- low concentration
- false positive results

Real-time PCR

Non-invasive genotyping

- Prevention from false results:
 - three PCR repeats
 - two independent DNA extractions
- Used controls:
 - positive:
 - of DNA extraction (ALB, GAPDH, CCR5 beta-globina, DNA of corn)
 - of fetal DNA presence (SRY, STR, indel, metRASSF1A, metSOX14, metTBX3
 - PCR
 - negatywne
- Aim of testing: immunoprophylaxis vs risk estimation, costs

Determining RHD zygosity

• Linkage analysis

Amplification of polymorphic loci linked with RHD deletion

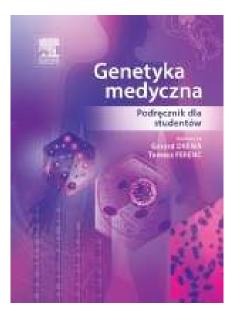
• qPCR

quantitative PCR , real-time PCR, reference gene

• Rhesus box based amplification

Genotyping and serologic testing of blood types

- 0¹ vs A¹ delG261
- 0² vs A¹ 6 SNPs including G802A,
- 0³ vs A¹ insG 804
- 0⁴ vs A¹ insG88
- 0⁵ vs A¹ C322T
- 0⁶ vs A¹ G542A



Genotyping and serologic testing of blood types

Indications:

- testing the foetus
- individuals after transfusions
- blood donors for alloimmunized recipients
- donors' screening to identify rare blood types
- determining frequencies of blood groups polymorphisms in population
- determining paternal heterozygosity in foetuses with the risk of HDFN
- genotyping patients with autoimmune hemolytic anemia

Literatura obowiązkowa

Genetyka medyczna Podręcznik dla studentów medycyny Gerard Drewa, Tomasz Ferenc (red.) Wydawnictwo Elsevier Urban & Partner

Rozdział 13. Grupy krwi