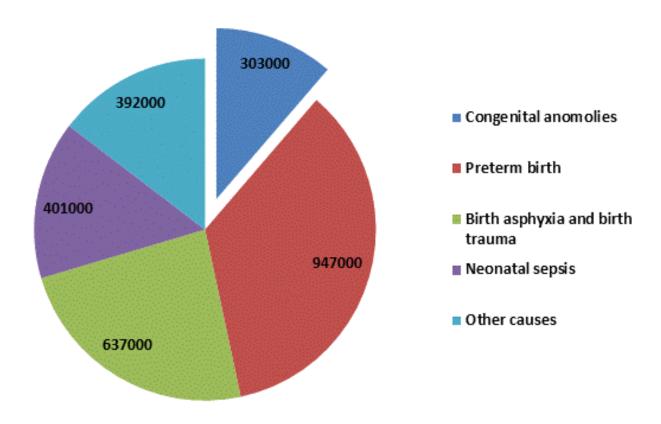
Congenital anomalies, Dysmorphology

JENNIFER CASTANEDA, KRZYSZTOF SZCZAŁUBA WUM 2025


Definitions

Phenotype: the set of observable characteristics of an individual resulting from the interaction of its genotype with the environment.

Congenital anomalies: structural or functional anomalies that occur during intrauterine life and can be identified prenatally, at birth or later in life.

- Major anomalies abnormalities that have medical, surgical, or cosmetic significance
- Minor anomalies cosmetic significance
 - = dysmorphic features

Causes of 2.68 million deaths during the neonatal period in 2015, worldwide

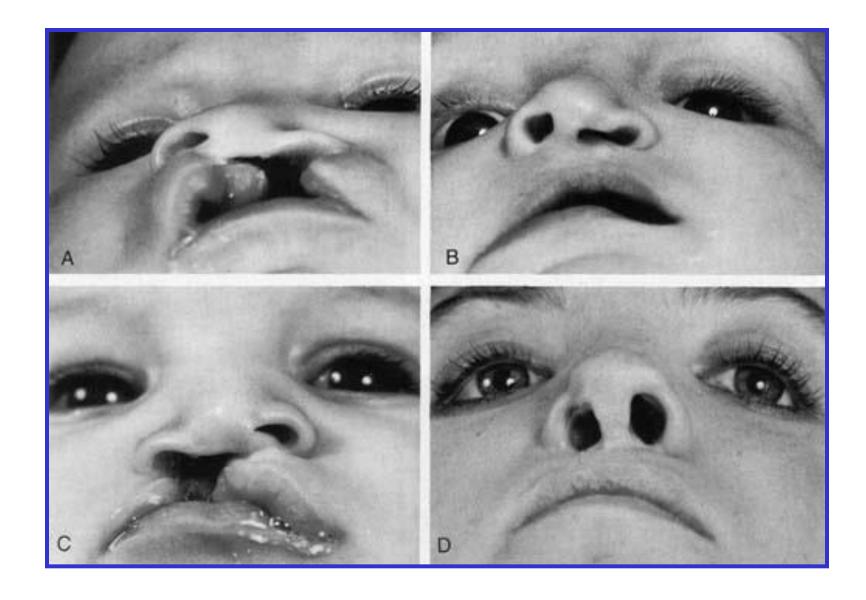
Source: adapted from WHO 2000-2015 child causes of death

Congenital anomalies

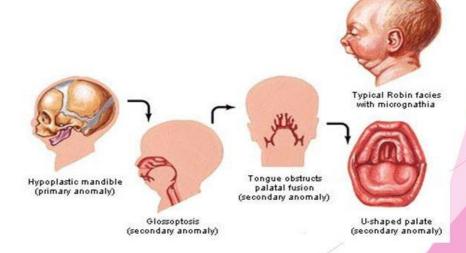
2-3% singletons have a <u>major</u> anomaly (e.g. heart defect)

10% have a minor anomaly (e.g. polydactyly)

Causes: localized errors (e.g. clefts), deformation (by physical force, e.g. oligohydramnios), disruption (by destruction, e.g. amniotic bands), teratogens (e.g. FAS), germline errors (syndromes)



Polydactyly

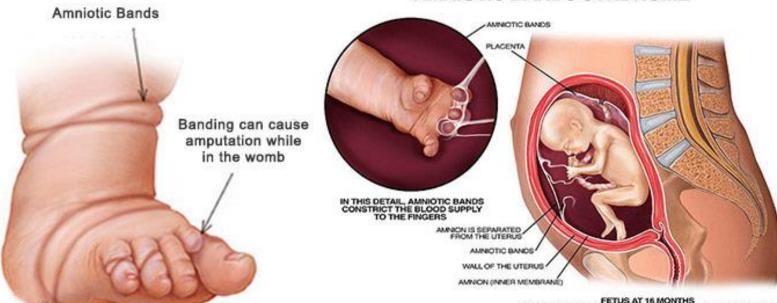

Etiologic heterogeneiety of cleft lip/palate

- Teratogens
- 22q deletion
- Primary mandibular hypoplasia
- Trisomy13
- Amniotic band syndrome
- Van der Woude syndrome

Pierre-Robin sequence

Symptoms

- Cleft soft palate
- High-arched palate
- Small opening in roof of the mouth (might cause chocking)
- Jaw that is abnormally small (Micrograthia)
- Jaw placed abnormally far back in the throat
- Downward displacement of the tongue (Glossoptosis)
- Large tongue
- · Natal teeth
- Ear infections



Preoperative frontal and lateral views of an infant with Pierre Robin sequence.

Sesenna *et al. Italian Journal of Pediatrics* 2012 38:7 doi:10.1186/1824-7288-38-7.

AMNIOTIC BANDS SYNDROME

FETUS AT 16 MONTHS

AMNIOTIC CONSTRICTION BANDS ARE CAUSED BY DAMAGE
TO THE PLACENTA CALLED THE AMNION. DAMAGE TO
AMNION PRODUCES FIBER-LIKE BANDS THAT CAN TRAP
PARTS OF THE DEVELOPING BABY.

http://chicagofootcareclinic.com/footproblems/deformities/amnioticbandsyndrome.html

Causes of congenital anomalies

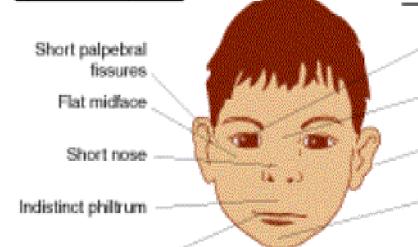
Multifactorial: 20-30%

Monogenic disorders: 10-20%

Chromosomal aberrations: 15%

Infection: 2.5%

Maternal diabetes: 1.5%


Medication: 1-2%

Unknown etiology

Discriminating Features

Thin upper lip

Associated Features

Epicanthal folds

Low nasal bridge

Minor ear anomalies

Micrognathia.

Empiric Recurrence Risks (%) for Selected Birth Defects

Condition	Affected Relatives(s)		
	None	1 sib/parent	2 sibs / sib & parent
Cleft lip/palate	0.1	4	10-11
Neural Tube Defect	0.1	3	8
Heart Defect	0.3	4-5	10-11

The risk of having any one major birth defect is less than 1% but this risk increases significantly if other relatives have the same birth defect Genetic etiology of recognized congenital disorders Many genes: chromosomal aneuploidies

A number of genes: chromosomal microdeletions / microduplications

A single gene: monogenic disorders

Types of morphologic abnormalities

Malformation

Deformation

Disruption

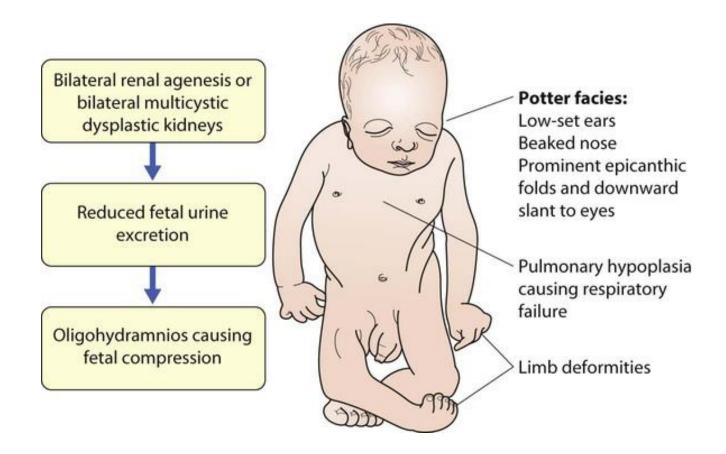
Dysplasia

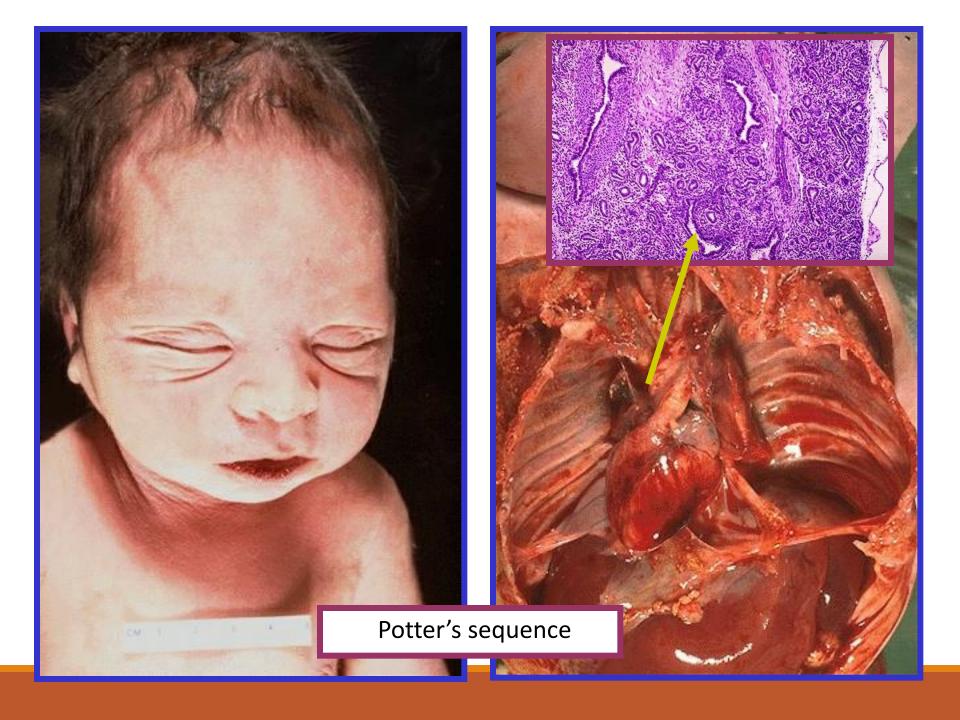
Malformation

Defect of morphogenesis due to an intrinsically abnormal disorder of formation, growth, or differentiation of an organ or structure

 hypoplasia of an organ or structure (microtia), incomplete closure (NTDs, cleft palate), incomplete separation (syndactyly)

Deformation


Abnormal form or position of a body or region of the body caused by extrinsic nondisruptive mechanical forces on a normally developing structure (fetal constraint)


 clubfoot, congenital hip dislocation, craniofacial asymmetry, overfolded ear

Deformity of ear helix due to uterine compression

Disruption

Defect resulting from a destructive breakdown of, or interference with, a normally developing structure resulting in death of cells or tissue destruction.

May be secondary to mechanical forces, infections, or vascular events.

 Loss of digit due to amniotic band constriction, lack of normal limb development due to intrauterine vascular disruption

Disruption of lip formation due to amniotic bands

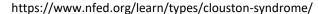
Dysplasia

Error of morphogenesis causing abnormal cellular organization or function in a specific type of tissue, mostly due to single gene defects

 Achrondroplasia, ectodermal dysplasia, osteogenesis imperfecta

Ectodermal dysplasia

Clouston syndrome – ectodermal dysplasia (*GJB6* gene)





https://pl.wikipedia.org/wiki/Zesp%C3%B3%C5%82 Cloustona

Diastrophic Dysplasia

Autosomal Recessive

Recognizable Patterns of Anomalies

Sequences

Associations

Syndromes

Dysplasias

Sequence

•a particular set of developmental anomalies occurring together in a recognizable and consistent pattern AND <u>a consequence of a primary anatomical defect</u> (e.g. Pierre Robin sequence = mandibular hypoplasia → tongue displacement → cleft palate and upper airway obstruction)

Association

Non-random occurrence of a combination of several anomalies not yet identified as a specific sequence or syndrome that occur more often together than by chance alone.

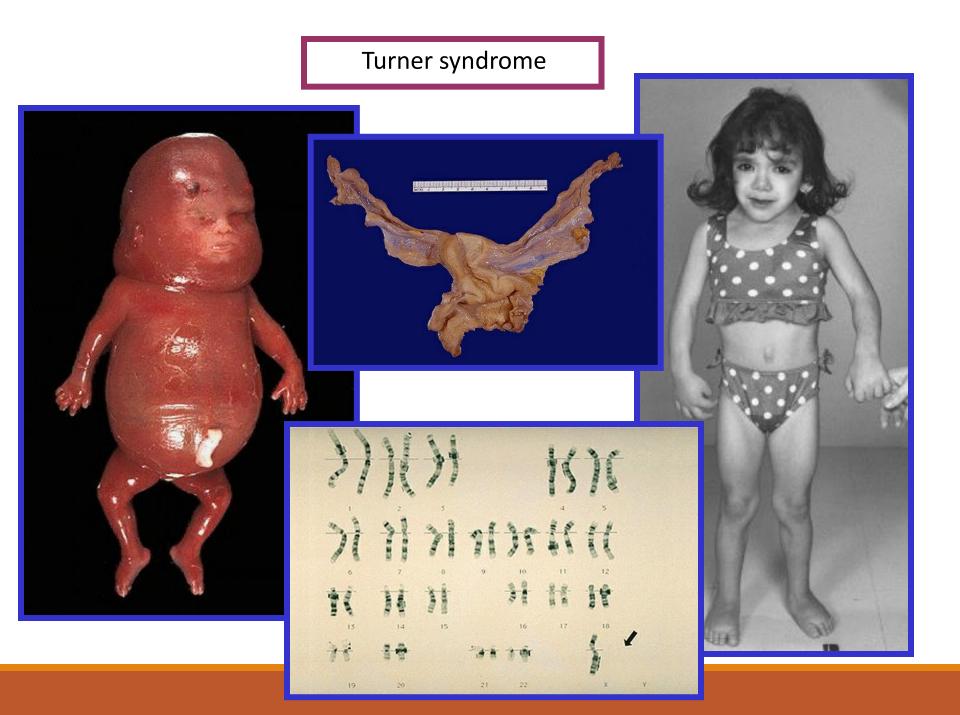
VACTERL association

VACTERL Association

Features

- V Vertebral anomalies
- A Anal atresia/ Imperforate Anus
- C Cardiovascular anomalies
- T Tracheoesophageal fistula
- E Esophageal atresia
- R Renal (Kidney) and/or radial anomalies
- L Limb defects

Newborn with radial atresia of the right arm, is displaying a limb anomaly included in VACTERL Association


http://www.slideshare.net/nijhum57/genetic-principles-in-paediatric-surgery

Syndrome

From Greek meaning "running together"

Multiple anomalies in one or more tissues or structures thought to be pathologically related due to a specific etiologic mechanism (chromosome disorder, single gene defect, environmental agent, or unknown factor)

Down syndrome, Williams syndrome, FAS, Turner syndrome

Challenges in diagnosing genetic syndromes

- Mostly rare disorders
- Variable expression
- Incomplete penetrance
- Sex-influenced or limited expression
- Pleiotropy
- Etiologic heterogeneity

Variable Expression

Morphological features expressed at different degrees of severity in individuals having the "same" abnormality

Each individual with a particular syndrome, sequence, or association will not have every known feature of that disorder, even within the same family.

The degree of variable expression may correlate with the degree of <u>pleiotropy</u> in single gene disorders

Penetrance

- proportion of individuals carrying a particular variant (or allele) of a gene (genotype) and who express an associated trait (phenotype).
- Complete penetrance neurofibromatosis type 1
- Incomplete penetrance familial breast cancer due to BRCA1 gene mutations

Sex-Influenced or Limited Expression

Some congenital anomalies and/or genetic syndromes due to autosomal defects are more easily recognized, or only recognized, in individuals of a particular gender

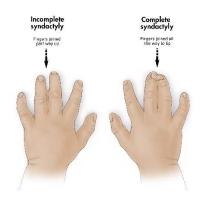
- Sex-influenced: Genital hypoplasia, hypospadias, virilization with hypertrophy of the clitoris
- Sex-limited: Hereditary prostate cancer

Etiologic heterogeneity

Locus heterogeneity: a similar phenotype is produced by mutations at different loci (Tuberous Sclerosis, PKD)

Allelic heterogeneity: a similar phenotype is produced by different alleles within the same gene (CF [CFTR gene])

Elements of dysmorphology

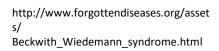

Dysmorphology

- recognition and study of birth defects (congenital malformations) and syndromes [David Smith, 1960]
- Gr. "dys" abnormal, defective; "morph" form

"As a medical subspecialty, dysmorphology deals with people who have congenital abnormalities and with their families. Whenever any physician is confronted by a patient with a birth defect, he or she becomes, for the moment at least, a dysmorphologist., (JM Aase: Diagnostic Dysmorphology, 1990, Plenum, New York).

What does 'dysmorphic' mean?

- •Children whose physical features are not usually found in a child <u>of the same age or ethnic background</u> (Be aware of parental looks!)
- •Some features are obvious dysmorphisms (e.g. premature cranial suture fusions) whereas others could be insignificant familial traits (e.g. finger syndactyly)
- Not only external features, but also those of internal organs


Dysmorphology in neonatology and pediatrics

http://www.medicalnewstoday.com/ar ticles/145554.php

http://symptomscausestreatmentprevent ion.blogspot.com/2014/01/what-is-turner-syndrome.html

https://www.hindawi.com/journals/crig/2012/247683/fig1/

Mild congenital anomalies

Hypertelorism/hypotelorism

Epicanthus

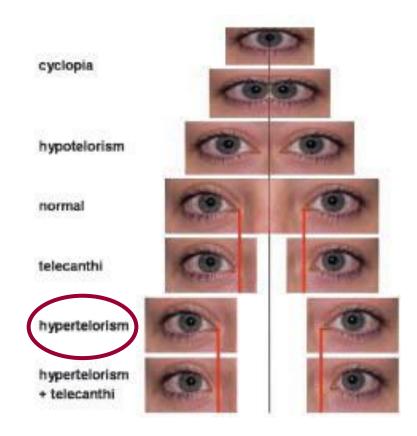
Simian crease

Slanted palpebral fissures

Ear tag, ear pit

Iris coloboma

Fifth finger clinodactyly


Finger syndactyly

Umbilical hernia

Supernumerary nipple

Hypospadia

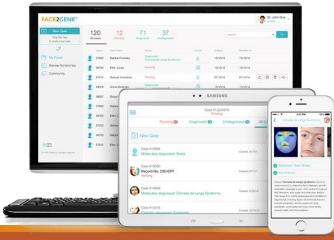
Bifid uvula

Conglomeration of mild anomalies = greater risk of coexistent major anomaly

Phenotypic diagnosis on the basis of "facial gestalt"

Cornelia de Lange s.
Cri-du-chat s.
Down s.
Wolf – Hirschhorn s.
Goldenhar s.
Apert s.
Crouzon s.
CHARGE
Treacher-Collins s.
Smith-Lemli Opitz s.
Rubinstein-Taybi s.
Mucopolysacharridosis

Dysmorphology tools


Anthropometric measurements

Dysmorphology databases

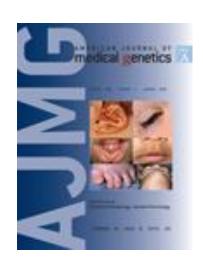
- Phenomizer
- POSSUM (Pictures of Standard Syndromes and

Undiagnosed Malformations)

- London Dysmorphology Database (LDDB)
- Face2gene

Vector distortion 1.56 Controls Contraction Expansion Controls Cornelia de Lange Angelman Apert Fragile X Down Progeria

Williams-Beuren


Treacher Collins

0.67

Facial Gestalt modelling (eLife; 3: e02020)

A J G AMERICAN JOURNAL OF medical genetics

American Journal of Medical Genetics Part A

Copyright © 2014 Wiley Periodicals Inc.

Special Issue: Elements of Morphology: Standard Terminology

January 2009

Volume 149A, Issue 1

Pages 1–127

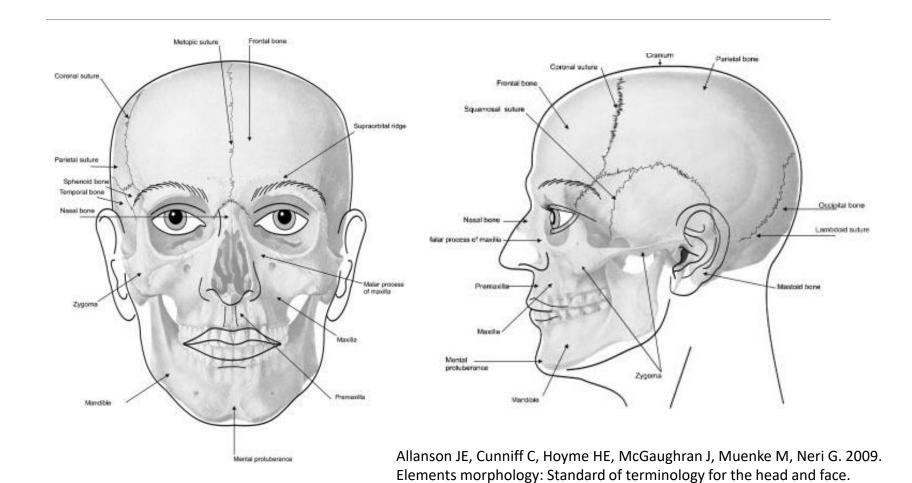
Standard dysmorphology terminology

Am 5 Wed Genet A. Addition mandiscript, available in FWC 2009 November 1

Published in final edited form as: Am J Med Genet A. 2009 January; 149A(1): 6–28. doi:10.1002/ajmg.a.32612.

Elements of Morphology: Standard Terminology for the Head and Face

Judith E. Allanson^{1,*}, Christopher Cunniff², H. Eugene Hoyme³, Julie McGaughran⁴, Max Muenke⁵ and Giovanni Neri⁶


RESEARCH ARTICLE

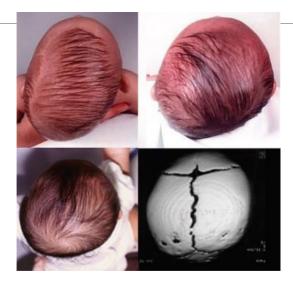
Elements of Morphology: Standard Terminology for the Lips, Mouth, and Oral Region

John C. Carey, ¹* M. Michael Cohen Jr., ² Cynthia J.R. Curry, ³ Koenraad Devriendt, ⁴ Lewis B. Holmes, ⁵ and Alain Verloes ⁶

Anatomic reference points

Am J Med Genet Part A 149A:6-28.

Abnormal skull shape



Brachycephaly –anterio-posterior shortening of the skull

Dolichocephaly – increased AP dimension

Abnormal skull shape

Plagiocephaly – skull assymetry

Trigonocephaly

Facial dysmorphy

Flat facial profile

Coarse facial features

Coarse features in mucopolysaccharydoses

Hurler syndrome (MPS IH)

Sanfilippo syndrome (MPS III)

Hunter syndrome (MPS II)

Morquio syndrome (MPS IV)

Maroteaux-Lamy syndrome (MPS VI)

Sly syndrome (MPS VII)

Stowarzyszenie Chorych na MPS http://chorobyrzadkie.pl/?s=5

Facial dysmorphy

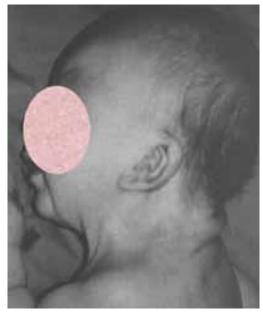
Frontal bossing

Prominent glabella

Facial dysmorphy

Micrognathia

Retrognathia

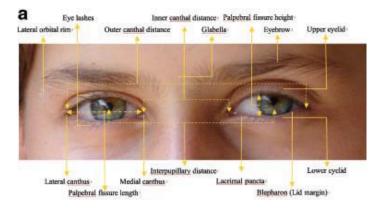


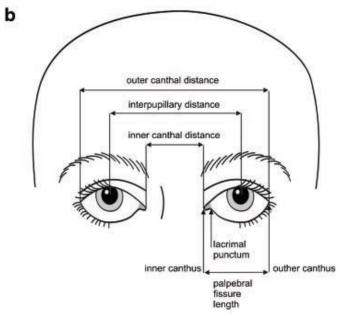
Micrognathia

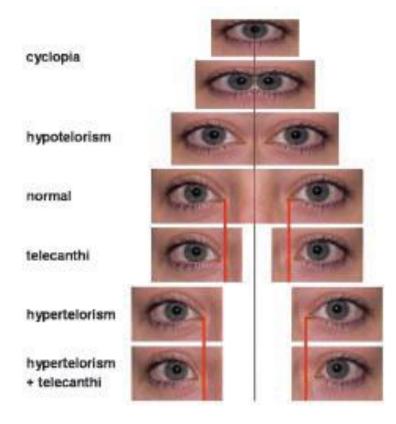
Definition: Apparently reduced length and width of the mandible when viewed from the front but not from the side

Comments: This is a bundled term comprising shortening and narrowing of the mandible and chin. It is defined here as it is a term in common usage.

Synonyms: Micrognathism; Jaw, small




Redundant nuchal skin


Definition: Excess skin around the neck, often lying in horizontal folds.

Comments: With age and increased vertical growth of the neck, excess nuchal skin may disappear and the neck may become broad or webbed. If the skin folds are vertical or paravertical, the term *Neck webbing* should be used.

Webbed neck

Blepharophimosis

Definition: A fixed reduction in the vertical distance between the upper and lower eyelids with short palpebral fissures.

Comments: This term is based on Saal et al. 1992. This is an acknowledged bundled term, though the separate coding of the components (palpebral fissure absence; presence of eyelashes) was deemed impractical. This is typically associated with a rudimentary or small globe. Frequently, a tuft of hair accompanies the aberrant skin

Cryptophthalmos

Synophrys

Meeting of the medial eyebrows in the midline.

Cosmetic hair removal or shaving may obscure this feature. It is controversial whether the medial eyebrows must meet in the midline to warrant this descriptor, as opposed to eyebrows that extend markedly toward the midline but do not meet.

Dysmorphy of the oral region

Thin upper lip

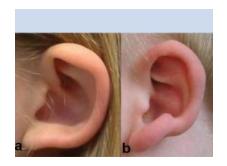
"Cupid bow" mouth

Tented upper lip

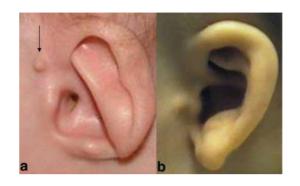
Wide mouth

Lip pits

Dysmorphy of ears


Crumpled ears

Cupped ear


Attached earlobe

Upturned lobes

Microtia

Preauricular tag

Definition: Laterally protruding ear that lacks antihelical folding (including absence of inferior and superior crura)

Cupped ear

Finger anomalies

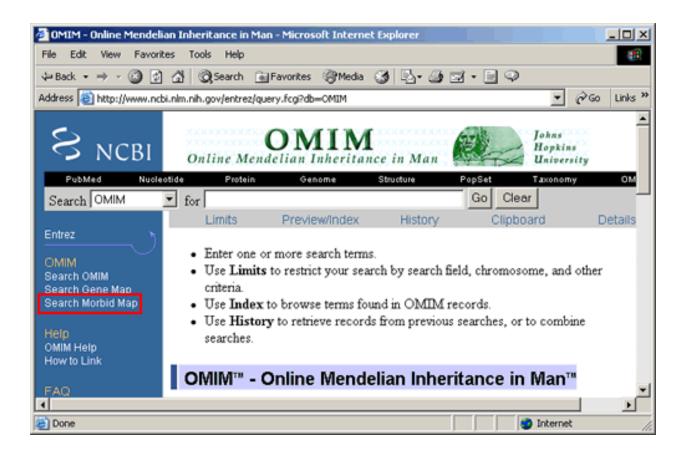
Clenched fist

Brachydactyly

Tapering fingers

Short fingers

The middle finger is more than 2 SD below the mean for newborns 27–41 weeks EGA or below the 3rd centile for children from birth to 16 years of age AND the five digits retain their normal length proportions relative to each (i.e., it is not the case that the middle finger is the only shortened digit)


This is an acknowledged bundled term as the definition in most anthropometric sources assumes that the other fingers are all as relatively short as is the middle finger. As the determination of the proportionality of the other four digits is clearly subjective, the term must be regarded as subjective.

Clenched hand

Definition: All digits held completely flexed at the metacarpophalangeal and interphalangeal joints

Comment: Is distinguished from Camptodactyly, as that term may describe fewer than five digits of a eudactylous hand and does not involve the MCPJ. The digits may overlap when they lie flexed in the palm. It is not necessary to specify the overlapping fingers finding separately.

Search Sort by: @ Relevance O Date updated RANKL Advanced Search: CMIM, Clinical Synopses, CMIM Gene Map Toggle: search terms highlighted Retrieve corresponding: gene map clinical synopses Search History: View, Clear Search: 'RANKL' Results: 1 - 10 of 57 | Show all | 1 2 3 4 5 6 Next Last Links 1: 602642, TUMOR NECROSIS FACTOR LIGAND SUPERFAMILY, MEMBER 11; TNF5F11 Cytogenetic location: 13q14.11, Genomic coordinates (GRCh37): 13:43,136,871 - 43,182,148 Matching terms: rankl 21 603499. TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 11A; TNFRSF11A Links Cytogenetic location: 18q21.33 , Genomic coordinates (GRCh37): 18:59,992,519 - 60,054,942 Matching terms: rapid 3: # 114480. BREAST CANCER ICD+, Links BREAST CANCER, FAMILIAL MALE, INCLUDED

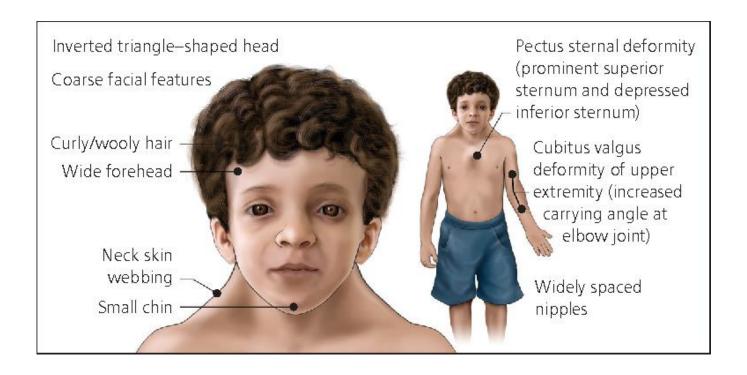
Cytogenetic locations: 1p34 1, 2q33.1, 2q35, 3q26.32, 5q34, 6p25.2, 8q11.23, 11p15.4, 11p15.1, 11q22.3, 12p12.1, 13q13.1, 14q32.33, 15q15.1, 16p12.2, 16q22.1, 17p13.1, 17q21.33, 17q23.2, 17q23.2, 22q12.1 Matching terms: rankl 602643. TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 11B; TNFRSF11B Links Cytogenetic location: 8q24.12 , Genomic coordinates (GRCh37): 8:119,935,795 - 119,964,382 Matching terms: rankl 5: * 600489. NUCLEAR FACTOR OF ACTIVATED T CELLS, CYTOPLASMIC, CALCINEURIN-DEPENDENT 1; NFATCI Links Cytogenetic location: 18q23, Genomic coordinates (GRCh37): 18:77,155,771 - 77,289,322 Matching terms: rank! Links * 602355. TNF RECEPTOR-ASSOCIATED FACTOR 6: TRAF6 Cytogenetic location: 11p12 , Genomic coordinates (GRCh37): 11:36,505,316 - 36,531,862 Matching terms: rankl

with SMA are SMRY and SMRZ. SMRY purvised motor reuron 1(is primarily involved: stroot 95%-96% of

between the ser States depote to transport and ser States attenues to transport to the service of

individuals with SMA are from pygous for a dealer, or turnostion of SMAY and about 2%-2% are compound. How is Link to dishefleviews

orphanet #Inserm

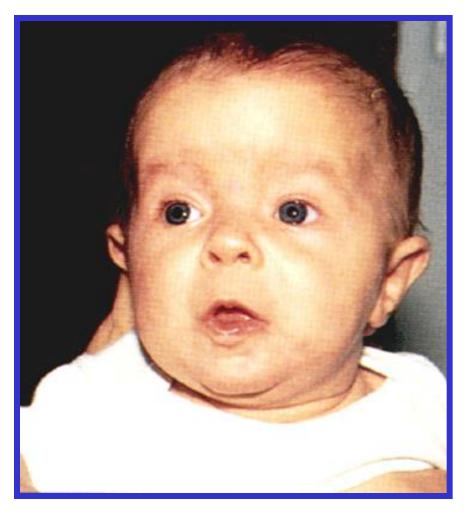


Genetic syndromes with dysmorphic features

Groupwork: report on frequency, clinical synopsis including dysmorphic features, diagnosis, surveillance

- Gr. A: Noonan syndrome
- Gr. B: Achondroplasia
- Gr. C: Mowat-Wilson syndrome
- Gr. D: Rubinstein-Taybi syndrome

Noonan syndrome



Noonan syndrome

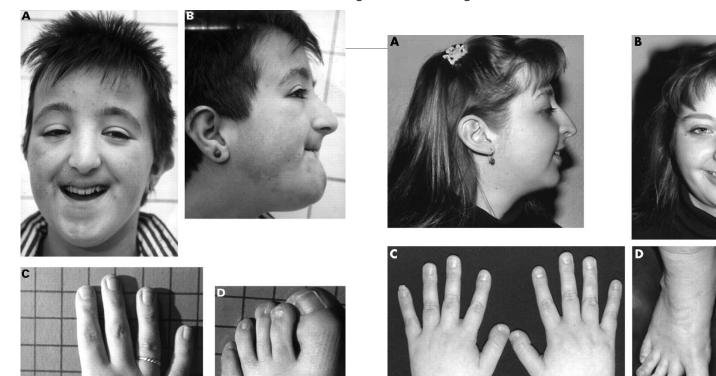
- Frequency 1:1000 1:2500
- AD, RAS-MAPK genes: *PTPN11*, *RAF1*, *KRAS*, *SOS1*, *BRAF*, *NF1*, *NRAS*
- Short stature, facial dysmorphy (hypertelorism, downslanted palpebral fissures, ptosis, low-set ears), cardiac defect (most frequently pulmonary stenosis (PS)), webbed neck, pectus carinatum / excavatum
- Clotting disorders

Achondroplasia

Autosomal Dominant

Achondroplasia

- •FGFR3 gene, AD
- Short stature, short limbs (particularly upper arms and thighs), hyperlordosis, valgus knee, prominent forehead, midface retrusion
- Normal intellectual development


Mowat Wilson syndrome

MWS

- ZEB2 gene
- Facial dysmorphy (hypertelorism, broad medial eyebrows, uplifted earlobes, open-mouthed expression, prominent or pointed chin)
- Moderate to severe ID, seizures
- Congenital anomalies: microphthalmia, Hirschprung disease, hypospadias, agenesis of corpus callosum, heart defects

Rubinstein Taybi syndrome

https://jmg.bmj.com/content/39/7/496

https://bjo.bmj.com/content/84/10/1177

RTS

- •16p13.3 microdeletion, mutations in *CREBBP or EP300* genes
- Broad, angulated thumbs and toes, short stature, facial dysmorphy (downslanted palpebral fissures, beaked nose), ID of varying degrees
- Congenital heart defects, urinary tract abnormalties, eye defects

Rubinstein Taybi syndrome https://www.youtube.com/watch?v=rdVIzLogHY0