Postnatal Cytogenetics

JENNIFER CASTANEDA, MD, PHD

Review: chromosome structure

https://thenaturalhistorian.com/2013/02/24/genetic-distance-humans-chimpanzees-divergence-baraminology/

ordine me	3	i Emerge	6	gui succe	September 5	7(1) 2()(
e gallings	f f	State	9 10	99 88 11	12	
13	14	16	16	2 & 2 8 17	38 18	1 1)()()()()()()()()()()()()(
> ∦ 19	8 X 20	\$ € 21	* å 22	X September 2	Y	19 20 21 22 X Y

Classification of chromosomal aberrations

- Autosomal vs sex chromosome aberrations
- Abnormalities of chromosome number:
 - Polyploidy
 - Autosomal aneuploidy
 - Sex chromosome aneuploidy
- Abnormalities of chromosome structure
 - Translocations
 - Deletions, microdeletions
 - Duplications
 - Inversions
 - Ring chromosomes

Aneuploidy caused by meiotic disjunction

Changes in chromosome structure

Duplication

loss of a chromosomal segment

duplication

reverses a segmênt

translocation

move segment from one chronostome to another

Chromosomal aberrations

- ▶ 1 of 150 live births
- ► The first chromosomal aberrations identified (1959):
 - Trisomy 21 Down syndrome
 - XXY Klinefelter syndrome
 - Monosomy X Turner syndrome

Chromosomal aberrations - symptomatology

- Frequent miscarriage
- Sex chromosome aberrations short/tall stature, ambiguous genitalia, infertility, primary amenorrhea, delayed development of secondary sexual characteristics

"chromosomal aberration phenotype":

- Multiple congenital anomalies
- Developmental delay, mental retardation
- Dysmorphic features

Chromosome morphology

Cytogenetic analysis methods

- Classic cytogenetics kariotype
- Molecular cytogenetics
- FISH (Fluorescence in situ hybridization)
 - CGH (Comparative genomic hybridization)
- MLPA (Multiplex ligase-dependent probe amplification)

4 The slide is viewed by a light microscope equipped with a camera; the sample is seen on a computer screen. The chromosomes can be photographed and arranged electronically on the screen.

The supernatant is discarded, and the cell pellet is suspended in a hypotonic solution. This causes the cells to swell and the chromosomes to spread out from one another.

3 The sample is subjected to centrifugation a second time to concentrate the cells. The cells are suspended in a fixative, stained and placed on a slide.

FISH

FISH

- Metaphase and interphase
- Detection of identified sequence
- Identification of chromosome

FISH ANALYSIS IN CHRONIC MYELOID LEUKEMIA

Philadelphia chromosome t(9;22)

M-FISH, SKY-FISH

MLPA – Multiplex Ligase-Dependent Probe Amplification

Methylation-specific MLPA (MS-MLPA)

ME028 Prader-Willi/Angelman

22q11.2 microdeletion – Di George syndrome

Array CGH

Material for cytogenetic analyses

- ▶ Lymphocytes
- Skin fibroblasts
- ▶ Bone marrow
- Amniotic fluid / umbilical blood
 - prenatal diagnosis
- Cancer cells from pleural effusion
- Somatic cancer cells

Standard nomenclature

ISCN 2016 - International System for Human Cytogenic
Nomenclature

Chromosome, arm, region, band 1q32.1

Chromosome 1, long arm, region 3, band 2, sub-band 1

ISCN symbols

+	Additional chromosome
-	Absence of chromosome
cen	Centromere
del	Deletion
der	Derivative
dic	Dicentric
dup	Duplication

j	Isochromosome
inv	Inversion
mar	marker
mat	Maternal origin
pat	Paternal origin
t	Translocation
?	Doubtful or questionable

Karyotype	Description				
46,XY	Normal male chromosome constitution				
47,XX,+21	Female with trisomy 21, Down syndrome				
47,XY,+21[10]/46,XY[10]	Male who is a mosaic of trisomy 21 cells and normal cells (10 cells scored for each karyotype)				
46,XY,del(4)(p14)	Male with distal and terminal deletion of the short arm of chromosome 4 from band p14 to terminus				
46,XX,dup(5)(p14p15.3)	Female with a duplication within the short arm of chromosome 5 from bands p14 to p15.3				
45,XY,der(13;14)(q10;q10)	A male with a balanced Robertsonian translocation of chromosomes 13 and 14. Karyotype shows that one normal 13 and one normal 14 are missing and replaced with a derivative chromosome composed of the long arms of chromosomes 13 and 14				
46,XY,t(11;22)(q23;q22)	A male with a balanced reciprocal translocation between chromosomes 11 and 22. The breakpoints are at 11q23 and 22q22				
46,XX,inv(3)(p21q13)	An inversion on chromosome 3 that extends from p21 to q13; because it includes the centromere, this is a pericentric inversion				
46,X,r(X)(p22.3q28)	A female with one normal X chromosome and one ring X chromosome formed by breakage at bands p22.3 and q28 with subsequent fusion				
46,X,i(Xq)	A female with one normal X chromosome and an isochromosome of the long arm of the X chromosome				

Overview of chromosomal disorders

"CHROMOSOME PHENOTYPE"

- developmental delay, behavioral disturbances
- congenital anomalies
- dysmorphic features

FREQUENCY OF CHROMOSOMAL ABERRATIONS

- 0,9 % live births, abnormal phenotype in half of them
- 23 34% ID + multiple congenital defects
- > 50 60% of 1st trimester miscarriages
- ▶ 6% of fetal deaths

MICRODELETIONS/MICRODUPLICATIONS

- Contiguous gene syndromes
- 0,7 − 1/1000, mostly de novo, AD
- More severe phenotype effects in microdeletions than in microduplications
- Microduplications: frequent familial occurence

Groupwork – microdeletion/microduplication syndromes

On the basis of the given cytogenetic result:

- What is the diagnosis / syndrome?
- Frequency, Clinical symptoms, Health supervision
- Prognosis

Group A: 46,XY,del22q11.2

Group B: 46,XY, del7q11.23

Group C: 46,XY, del17p11.2

Group D: 46,XX, del(5p)

Group E: 46,XX,del22q13.3

- More frequent cleft lip/palate
- Small jaw
- Small upper lip/mouth
- Eyes slanted upward or downward
- Low-set and/or abnormal folding of ears
- Short stature, mild to moderate learning difficulties
- Underdeveloped parathyroid and thymus
- Cardiac malformations

Digilio et al., 2005

Facial modules

Development over time Neural crest contributions Facial malformations

Summary

DiGEORGE syndrome del22q11.2

Reproduced from Lancet, Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362:1366-1373.

DiGeorge syndrome - Thymic aplasia and right aortic arch - Anterior view. Neonatal death by laryngeal atresia

William's syndrome del7q11.23

WILLIAM's SYNDROME

ELN gene

- IUGR, postnatal hypotrophy, short stature
- feeding difficulties, gastro-esophageal reflux
- congenital heart defect: SVAS (75%), PPS; hypertension, arrythmia, sudden cardiac death, mitral valve prolapse in adults
- connective tissue symptoms: rough voice, inguinal hernia, hypermobile joints, delicate, elastic skin
- idiopathic hypercalcemia (30%), hypercalciuria (15%)
- constipation
- behavioral phenotype "cocktail party manner", empathy, overfriendly behavior, oversensitivity, anxiety, phobias
- facial dysmorphy
- average IQ or mild ID
- chronić ear infection
- ocular defects (50%)
- renal disorders stenosis of renal arteries, kidney stones (5%)

Williams syndrome https://www.youtube.com/watch?v=BlexMOZCSVQ

SMITH - MAGENIS SYNDROME del 17p11.2

- brachycephaly
- prognatism
- wide face, deepset eyes
- short stature
- short, stubby fingers
- hoarse voice
- frequent ear infections
- hypercholesterolemia
- hypotonia in infancy
- sleep disturbances
- stereotype movements
- autoagression
- ID, severe speech delay
- peripheral neuropathy

22q11.2 microduplication s.

Frequent symptoms:

Abnormal skull shape
Flat facial profile
Prominent ears
Ear tags
Schooling difficulties, global developmental delay

Less frequently:

Palatal, laryngeal insufficiency hypocalcemia
Autistic behavior

Symdrome overlap with DiGeorge s./VCFS

Frequent familial cases

Pedigree analysis, Clinical assessment of relatives

Microduplication syndromes

22q11.2 clinical features similar to microdeletion

(DiGeorge'a/VCFS)

7q11.23 severe speech delay

15q11-13 autism, speech delay

(PWS/AS)

(WBSCR)

Xq28 ID, speech defect, hypotonia, frequent infections

(Rett s.)

MECP2

17p11.2 Potocki – Lupski syndrome

(Smith Magenis s. -del17p11)

dup6q24 - 27 ID, obesity

cri du chat syndrome

- 46, XX, del 5p
 46, XY, del 5p
- Round face in newborn, cat's cry (disappears around age 2), congenital heart defect, ID

CDC – CONTIGUOUS GENE SYNDROME

Cerruti Mainardi, Paola. (2006). Cri du Chat syndrome. Orphanet journal of rare diseases. 1. 33. 10.1186/1750-1172-1-33.

PHELAN-MCDERMID SYNDROME – DEL 22Q13.3

Koolen A, et al (2005). Molecular characterisation of patients with subtelomeric 22q abnormalities using chromosome specific array-based comparative genomic hybridisation. European journal of human genetics: EJHG. 13. 1019-24. 10.1038/sj.ejhg.5201456.

- Developmental delay, autistic behavior, increased pain threshold
- Hypotonia
- Dysmorphic features: dolichocephaly, long eyelashes, dysplastic ears, rounded nose tip, pointed chin, large hands, dysplastic nails

Table 1. Features associated with 22q13.3 deletion syndrome [Cusmano-Orog et al., 2007; Dhar et al., 2010; Phelan et al., 2010]

>75% cases	>50% cases	>25% cases	<25% cases
global developmental delay absent or severely delayed speech normal or accelerated growth neonatal hypotonia	large, fleshy hands dysplastic toenails long eyelashes dolicocephaly poorly formed/large ears wide brow full/puffy cheeks full/puffy eyelids deep-set eyes flat midface wide nasal bridge bulbous nose pointed chin sacral dimple decreased perspiration autism/autistic like behavior decreased perception of pain mouthing/chewing non-food items	strabismus ptosis renal abnormalities epicanthal folds long philtrum high arched palate malocclusion/widely spaced teeth 2–3 syndactyly of the toes seizures cardiac defects lymphedema gastroesophageal reflux cyclic vomiting precocious or delayed puberty	teeth grinding (24%) arachnoid cyst (15%) tongue thrusting (15%) 5th finger clinodactyly (14%) cortical visual impairment (6%) hypothyroidism (5%)

PMS – SHANK3 GENE

- 22q13.3 deletion (80-85%)
- Ring chromosome
- Unbalanced translocation (15-20%)

Phelan, Katy & McDermid, Heather. (2012). The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Molecular syndromology. 2. 186-201. 10.1159/000334260.

BECKWITH – WIEDEMANN syndrome (BWS)

- Duplication / Deletion of 11p15 (IGF2 gene)
- macroglossia, omphalocoele, high birth weight, ear pits, hemihyperplasia
- hypoglycemia in neonatal period (could cause developmental delay), high tumor risk (Wilms tumor, hepatoblastoma, rhabdomyosarcoma, adrenal tumor)

Subtelomeric rearrangements

TELOMERES

- Protect chromosomes from deterioration during cell replication
- Chromosomal organization in the nucleus
- Sequence: TTAGGG

SUBTELOMERIC REGION

WHAT WE KNOW ABOUT SUBTELOMERES

- Dynamic patchworks of multichromosomal blocks
- Homologous sequences prone to rearrangements
- Subtelomeres include encoding regions

SUBTELOMERIC REARRANGEMENTS

- Ip36 deletion
- Fascioscapulohumeral muscular dystrophy (FSHD)
- Wolf-Hirschhorn syndrome (4p-)
- Cri-du-chat syndrome (5p-)
- 9q34 deletion
- Miller-Dieker syndrome
- Phelan-McDermid syndrome

SUBTELOMERIC REARRANGEMENTS

- 5,1% of children with ID second most frequent cause next to Down syndrome
- 7,4% of children with moderate or severe ID
- 0,5% of children with mild ID

Symptoms (~100%)

Severe ID
Absent speech
Hypotonia
Facial dysmorphy
Gait disturbances
Abnormal behavior

Frequent (50 - 80%)

Growth delay
Heart defect
Epilepsy
Deafness

Less frequent (<50%)

Cardiomyopathy Cleft lip / palate Hypothyroidism Obesity

1p36 deletion

Prominent forehead, deepset eyes, flat nose, pointed chin, horizontal eyebrows

WWW.RARECHROMO.ORG

1p36 deletion syndrome

WOLF-HIRSCHHORN SYNDROME

- ▶ del 4p
- Hypertelorism, prominent glabella, wide nose ("greek helmet face"), thick lower lip, iris coloboma, cleft palate, ID

FACIO-SCAPULO-HUMERAL MUSCULAR DYSTROPHY (FSHD) – del4q35

- Third most frequent muscular dystrophy, after DMD/BMD, myotonic dystrophy type I
- Muscle weakness of face, shoulder girdle
- Lower limbs rarely affected
- Hyperlordosis
- Deafness (60% of patients)
- Cardiologic symptoms RBBB

FSHD - DIAGNOSIS

- Typical clinical features
- CK normal or slightly elevated
- EMG nonspefic myopathic changes
- Muscle biopsy dystrophic changes
- MR evaluation of affected muscles

MILLER-DIEKER SYNDROME – del17p13.3

- Lissencephaly
- Severe ID
- Hypotonia
- Epilepsy before 6 mos
- Microcephaly
- Growth delay

https://prezi.com/hyphafzgrzel/miller-dieker-syndrom/

http://www.cytocell.com/probes/123-smithmagenis-flimillerdieker-probe-combination

MDS – DYSMORPHIC FEATURES

- Prominent forehead
- Midface hypoplasia
- Short nose
- Lowset, dysplastic ears
- Micrognathia

https://www.ncbi.nlm.nih.gov/books/NBK5189/figure/chrom17-lis.F2/?report=objectonly

GENES AND SYNDROMES - LISSENCEPHALY

Syndrome/Disease	Gene symbol	Protein function	Region	OMIM number	Inheritance pattern
Lissencephaly classic Type I					
Miller-Dieker type	PAFAH1B1	Nuclear migration factor	17p13.3	601545	AD
Sub-band heterotopia type	DCX	microtubule regulator	Xq22.3	300121	XL
	RELN	Neuronal migration factor	7q22	600514	AR
	ARX	Homeobox, neuron function	Xp22.13	300382	XL
Cobblestone type lissencephaly Type II					
Muscle-Eye-Brain	POMGNT1	O-mannosyl glycan synthesis	1p34	253280	AR
Fukuyama	FCMD	role in o-mannosyl glycosylation	9q31	607440	AR
Walker-Warburg Syndrome (WWS)*	POMT1	o-mannoyl transferase 1	9q34.1	607423	AR
Walker-Warburg Syndrome (WWS)	POMT2	o-mannoyl transferase 2	14q24.3	607439	AR
Muscular Dystrophy, Congenital, MDC1C	FKRP	role in o-mannosyl glycosylation	19q13.3	606596	AR
Muscular Dystrophy, Congenital, MDC1D	LARGE	role in o-mannosyl glycosylation	22q12.3	603590	AR

Wolfa-Hirschhorn s.

Miller-Dieker s.

FSHD

del1p36

GENETIC COUNSELLING

- Estimation of family genetic risks
- Referral to specialists
- Periodic genetic consultations (new diagnostic tests, healthcare surveillance)
- Genetic counselling at age of maturity
- Information on support groups, family networks, associations

